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J. Phys A: Math. Gen. 25 (1992) 3667-3682. Prinlcd in the UK 

A generalization of Handscomb's quantum Monte Carlo 
scheme-application to the 11) Hubbard model 

A W Sandvikt 
Depanmcnt of Physics, Univenily of California. Santa Barbara, CA %lM, USA 

Rcccived 2 Janualy 1992, in final form 30 March 1992 

Abslrilcl. A rcccntly introduced generalization of Handscomb's quantum Monte Carlo 
scheme is Cunhcr developed. Expressions for expectation values of various abcrvables 
are studied in detail. A more cmcicnl algorithm for imponance sampling in a space 
of slate vecton and OpCrdlOr strings is mnslructcd, using the ID Hubbard model as an 
illusIralive cxamplc. As a lest of the method, 32-sile rings at band fillings i, and $ 
arc sludicd ill a low leniperaturc. Rcsults for spin- and charge-density Slructure factors 
and slalic susccptihilities are prcscntcd. 

1. Intmduction 

Quantum Monte Carlo simulation is a powerful non-perturbative method for studies 
of lattice models in condcnsed-matter physics. A host of simulation techniques have 
been developed, such as the Suzuki-Tkotter [l-51 and Handscomb's [6-9] schemes 
for spin systems and world-line [IO] and determinant [Il-131 methods for interacting- 
fermion systems. Apart from the so-called 'sign problem' [14], which restricts the class 
of models which wn bc elliciently studicd, a limiting factor is the vely long compu- 
tation times required for large systems at low temperatures, where the interesting 
physics takes place. Thus there is continued interest in algorithm development. In 
this paper we further develop the generalization of Handscomb's scheme introduced 
in [15], and apply it to the iu Hubbard model. 

Consider the thermal expectation value of an operator A at temperature T = 
U P ,  

for a system described by a Hamiltonian 

In Handscomb's simulation schcmc 161 ~ - 0 ~ '  is Tdylor-expanded and the powers of 
H are written as sums of products of thc operators $, i.e. 
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3668 A W Sundvik 

where S, denotes an index sequcnce l , ,  . . . , l ,  with 1 6 l i  < M. The partition 
function is similarly written as 

If all the traces in (1.3) and (1.4) can be rapidly evaluated, expectation values can be 
estimated sampling the sequences S, using the magnitude of-W( S,) as the relative 
probability of generating a sequence S,. However, the traces are generally not easy to 
evaluate, and the method is essentially applicable only to the s = $ Heisenberg model, 
for which the traces can be evaluated analytically in any number of dimensions [6]. 
In [15] a generalization was devclopcd in which instead of the traces above, matrix 
elements (.In H,, la)  are used in the weights. The sampling space is thus extended 
to also include a complcte set of basis states so that a ‘configuration’ is specified ty 
an index sequence and a state vector. This scheme is applicable to a much wider 
class of models. In the prcscnt study the method is further improved on. Specifically, 
a new procedure for gcnerating configurations is developed and general expressions 
for various expectation values are studied in detail. The method is applicable to spin 
systems and interacting fcrmion and boson systems. In the case of fermions the sign 
problem is likely to limit the use to one-dimensional systems. As a demonstration of 
the method, a study of the one-dimensional Hubbard model is included. 

In section 2 the gcneral formalism of the method is introduced and in section 3 
expressions for operator averages of interest are derived. In section 4 a scheme for 
generating configurations is clevelopcd, using the ID Hubbard model as an illustrative 
example. Results of test runs on this model are compared with exact data for small 

fillings are also presented. 
sysi~mj in jeciiun 5, \ytlcii: icsuiij U[ sirnu;aiioi,s of laigzi yj.siems ai vai;oiij bai,d 

2. General fornialisni 

Writing the trace in (1.3) as a sum over diagonal matrix elements, the thermal expec- 
tation value of an opcrator A can be written 

where the states IQ) kirm a complete set. We define a weight function for configura- 
tions (a, S,) as 

Given that a function .4(a,S,) can be round, such that (2.1) can be written 

E CA(a,S,)W(o,S, , )  
0 n=ns. (A) = c E C1.l’(a,Sn) * n=os. 
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the average can be cstimated using importance sampling in the space {la)} @ 
{S,,n = 0, 1,. . . , m). In [U] a maximum length of the sequences was chosen in a 
self-consistent fashion and unit operators were introduced in the operator products 
shorter than the maximum length, so that the simulation scheme could be formulated 
in a space with fmed length of the index sequences. Here we will put no upper 
bound, however, and there are no intrinsic approximations in the method. As in 
Handscomb’s scheme, the contributions from different lengths of the sequences will 
be determined by the temperature and the energy and the heat capacity of the sys- 
tem [6]. Only a limited range of lengths will give significant contributions. Thus 
the fact that the sampling space includes index sequences of all lengths will pose no 
problem in practice (except perhaps close to a phase transition). 

We will work undcr the assumption that a positive-definite weight can be con- 
structed, so that an expcctation value is given by 

(4 = ( 4 a .  % ) ) w  (2.4) 

where (. . .)w indicates the arithmetic average with the configurations generated using 
W as a relative weight. We choose a basis {la)} in which the Hamiltonian can be 
written as a sum of opcrators if, such that 

hila) = h( i ,a )~a‘)  ia),iai) E {I.)) (2.5) 

i.e. the result of if, opcrating on a basis vector is proportional to a basis vector 
(or zero). qpically, for spin systems the basis chosen is the basis {IS;, . . . , SC)} of 
eigenstates of the zcomponent of the spin at all sites and for tight-binding models 
the basis {Inl,. . , , i iN) )  of eigenstates of the number operators for all sites. We 
define a propagated state I a ( p ) ) ,  

P 

M P ) )  = r.n iI,,I4 1 4 0 ) )  = I 4  
$ = I  

where T B a normalization factor. The matrix element in (2.2) then 

In a Monte Carlo simulation a configuration (a’, S;,) is tentatively generated from 
a configuration (a, S,) by a small change in the latter. The probability of accepting 
the new configuration involves the ratio of the weight factors, 

The updating scheme should be constructed such that the part of the product in (2.7) 
affected by a change can be easily isolated and the ratio rapidly evaluated. Before 
such a scheme is constructed in section 4, we turn our attention to general expressions 
for a number of expectation values of interest. 
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3. Expressions for expectation vulues 

Since 

W(a ,S , )  = W 4 P ) , S , ( P ) l  (3.1) 

where S , ( p )  is the index sequence I,,,,. . . , l , ,  l , ,  . . . , l , ,  obtained by cyclically 
permuting S, p times, an equivalent expression for the average (2.4) is 

(3.2) 

The use of the averaged A improves on the statistics of the simulation and also, as 
will be seen below, allows for Some formal simplifications. 

If the operator A is diagonal in the basis used, i.e. 

Ala) = .(a)la) (3.3) 

we cieariy have A(a,S,,j = a i a j ,  or 

(3.4) 

For non-diagonal operators the situation is more complicated. In principle a? ex- 
pression for an expectation value of any operator A can be constructed if A can 
be written as a sum of products of the operators hi in the Hamiltonian. Consider 
A = H , .  Then 

Fbr a given state la) there is a one-to-one correspondence between the contributing 
sequences of length 111 - 1 above anU sequences of length m which give a non-zero 
weight (2.2) and which have 6 as thcir last element (I, = k). Thus, defining 

we get (3.5) when summing A ( u ,  S , , ) W ( a ,  S,,). Using (3.2) the average is obtained 
sampling the number N ( k )  ol indices k in the sequences 

(3.7) 
1 
P 

( i lk )  = - - ( N ( k ) ) , v .  

Thus the energy is given by the average length of the sequences 
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The heat capacity is obtained taking the derivative with respect to the temperature 
of the above expression. The result is 

c = (7&/ - (7l)'W - ( 7 q W  . (3.9) 

For a product of m operators kk, ,  . . . , I I ,_  we get 

N ( k 1 , .  . . , k , ) )  (3.10) 
i= l  W 

where N ( k , ,  . . . , k,,,) denotes the number of ordered subsequences k,, . . . , k, in 
S,. The form of (3.10) indicates that it will be dillicult to obtain good estimates of 
products of a large numbcr of operators. 

Now consider an jmab'inaly-time-clependent product 

A , ( T ) A , ( O )  = e T f i / i 2 e - ' H A 1 .  (3.11) 

"dylor-expanding the cxponcntials, the ensemble average can be written 

Changing to a summation ovcr index sequences and a sum over all positions of A, 
in the operator product results in 

(3.13) 

Consider first the case or A,, A, diagonal. We then get, comparing with the weight 
function (2.2) and using (3.2), 

(3.14) 

The propagated states ( ~ ( p ) )  are periodic for all allowed configurations, so that with 
an index sequencc of length n,  la(ri + p ) )  = l a ( p ) ) .  For A,, A, not necessarily 
diagonal, consider the sirnplcst case A, = if, , ,  A2 = H k 2 .  We then get 

(3.15) 
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where N (  IC,, k,; m) is thc number of times the indices ICl,  IC, appear in the sequence 
S, in the given order and separated by m positions. 

Integrating ( i , ( ~ ) A , ( 0 ) )  from 0 to p gives a Kubo integral. Using the periodicity 
of the propagated states givcs in the diagonal case 

Rx &e product ! f ikz(r)Lrk,[O)) considered above, the Kubo integral becomes 

(3.16) 

(3.17) 

(3.18) 

4. Application to the 111 Hubbard model 

In this section a simulation schcmc for thc ID Hubbard model in the canonical 
ensemble is mnstructcd. Thc Hamiltonian is 

where the operators rekr to the position basis, with basis states 

la) = inll , .  . . , nNlj @ i 7 1 ~ ~ ,  . . . , n N J .  ( G j  

As we work in the canonical enscmblc the sum in (2.1) is over all states with given 
numbers of particles with spin up and down. Wc define the operators 

fI . - c f  e .  + 
I,,  - x,1 2 t I . T  + C i + I , T C i , l  

(4.3) 
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In terms of these operators the Hamiltonian, with t set to 1, can be written 

N 

J? = -E( + k2,, + Ufii,,i + g4,,) + N ( U  + 1 )  . (4.4) 
i= I 

The unit operators are included in h3,, in order to make the weight function positive- 
definite. The unit operators fi4+ are added to the Hamiltonian for the purposes of 
the updating scheme. The constant N( U + 1) only sets the zero of the energy and 
is neglected in the simulation. 

We adopt the phase conventions 

c[rl.. . , n i ,  = 0 ). . .)  = (-l)~:rl . . .  ,?IiT = 1 (...) 

c ; , ~ ] . .  t . ,niL,= 0,. ..) = ( - I ) ~ ! + ~ : /  ..., n. = I , . .  .) 
(4.5) 

11 

where denotes thc number of spin-u particles on sites with position numbers less 
than i and nT is the total number of spin-T particles. For c , , ~  and c , , ~  similar phase 
relationships hold. With antiperiodic boundary conditions, 

c N t l , o  = -'l,a 

it follows that if both n, and 11, are even, any i Ia ,*  gives the phase +1 when 
operating on a basis vcctor. A positivc-dclinite weight function is thus ensured. 

Now, let S, denote a sequence of index pairs (i;), . . . , (i;), with a; = 1,2,3,4,  
and b, = 1,. . . , N .  We will also use the notation (i'), and call this object an 
a-operator acting on thc ststc la(i)), as if it were the actual operator fia,a. 

The weight function can now be writtcn 

where n3 is the number of 3-operators in S, and M is the matrix element 

With the definitions (4.3) M is always cqual to 0 or 1. 

1,2,. . . ,CO}, satisfying the detailed balance principle, 
We now construct an algorithm lor a random walk in the space {la)]  @ (Sn, n = 

(4.9) 

where p[(a,S,)  - (a', S:L,)] is the probability ol making a transition from (a, S,) 
to (a ' ,Sb,) .  Starting from a configuration with non-zero weight, the weight function 
ratio is 

(4.10) 
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As M(cr',SL,) is either zero or one, all acceptance probabilities can be calculated 
under the assumption that it actually is equal to unity. Then M need only be evalu- 
ated in case a change has been (tentatively) accepted and the change finally accepted 
if M remains equal to one and rejcctcd otherwise. This allows for considerable time 
savings, since the most time-consuming step is the evaluation of M .  

The updating schemc consists of a number of Monte Carlo moves which together 
ensure ergodicity. Thc length of the index sequence is changed by inserting and 
removing 4-operators, which can appear anywhere in the sequence, independently of 
the state la). All othcr moves are made with the length of the sequence fixed. The 
number of 3-operators is changed in moves of the type ( : ) p  tt ( z , )p .  Any 3-operator 
can be removed from a scquence, whereas (2) cannot be inserted at position p if site 
b in the state I a ( p  - 1)) is doubly occupied. Changes in the number of 1- and 2- 

Moves of the typcs ( i ) p , ( : ) p l  - ( L ) p , ( i ) p > ,  t = 1,2, are sufficient to generate all 
allowed sequences for an opcn chain. With periodic boundary conditions additional 
moves changing the 'winding numbcr' must be included, at least for small N and when 
boundary conditions arc important. In mows involving 1- or 2-operators at positions 
p ,  and p , ,  the states l a ( k ) ) ,  k = p , ,  . . . , p ,  - 1 (alternatively k = p , ,  . . . , p ,  - l), 

7he move results 
in a zero matrix clemcnt A4 if an operator ( E ) p  acts on a state l a ( p -  1)) with 
n b t ( p  - 1) = n b + , , ( p  - 1) or n b , ( p  - 1) = n,+,L(p - 1) and t = 1,2 respectively. 
The move can also rcsult in a 3-operator acting on a doubly occupied site, which 
again gives a zero M .  For the moves involving 1- or 2-operators the index sequence 
is split into N / 2  sub-scquences, with the kth sub-sequence containing all operators 
acting on either the two sites 2k; 2 k  + 1 or 2k - 1; 2k. Moves involving operators 
acting between pairs of sites are thcn made in the corresponding sub-sequences. The 
time needed to check for illcgal operations is thus independent of the size of the 
system. Changes in the state vector 1.) are also made with the index sequence split. 
We now consider the ditferent types of moves in detail. 

(i) Moves changing the length of the sequence: starting with p = 1, an attempt 
is made to remove the opcrator ( : ) p  if a = 4. Thereafter an attempt is made to 
insert an operator (i)p,, with p' = p +  1- 72,.+ ni,  where nr and ni are the number 
of operators so far rcmovcd and inserted respectively. These steps are repeated a 
number, L, of timcs with p - p + 1. I, is chosen larger than the maximum length 
that the sequence will rcach, so that each position is visited at least once in a series 
of moves. (After the last position has been visited we continue from p = 1 in the new 
Ia)n..Pn,-e \ U o l c  ,.r tlrn CmjlC rkn C n l : n E  ,.f mn.lPC :c mQ,io ;n the nnnnr;+a A ; r e r t : n n  
"C'L"C.LCC., ll",, Y, L l l L  L l l l l L J  L l l L  O C . l l . 7  U, 11I""L., 0 lll""I "I ...U Yyy'Ya'LU " . . I * L L " I . ,  

Le. starting from p = I I  and attempting thc insertions in the direction of decreasing 
position numbers. Thcrc arc n + 1 positions a t  which an operator can be inserted in 
a sequence of length 11. Thus the above scheme gives the correct a priori frequency 
for attempting inscrtions and removals. We can then use the heat-bath acceptance 
probabilities 

operators mmt invn!ve (a! !cast) fwo opera!nrs in order to maintnin a fio.n.-zero weight. 

are affected (the position indices are periodic with period "). 

1"; p 
n+ 1 + N O  

Plinsert 4-opcrator] = 
(4.11) . .  n 

P[removc 4-operator] = 
n + N P  

which satisfy deteilcd balmcc if b' above is chosen' with equal probabilities amongst 
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1 , .  . . , N .  
(ii) Moves changing the number of 3-operators: starting from p = 1 a change 

(3, -, (i,’)p is attemptcd with a‘ = 3 if a = 4 and vice versa. If a = 1 or a = 2 
the state / a ( p  - 1)) is propagated with ( t )p ,  generating J a ( p ) ) .  The above s t e p  
are repeated with p = 2 , .  . . , n. An attempted move (:)p - (z,)p results in zero 
weight for the new configuration if the site b‘ is doubly occupied in I a ( p  - 1)). 
Such an attempt is thcrcforc rejected. For the allowed moves we use the Metropolis 
acceptance probabilitics 

I 

(4.12) 

(iii) Moves changing the number of 1- and 2-operators: the index sequence is 
first split into N / 2  sub-scqucnccs with each sub-sequence containing all 1-, 2- and 
3-operators acting on a distinct pair of sites i, i+ 1, and the 4operators (t). Moves of 
the type (i) ( f )  c) (t) (:) arc then attempted within the sub-sequences. There are two 
ways of splitting the scqucncc; with the kth sub-sequence containing the operators at 
sites 2k- l ,2k  (A) or 2 k ,  2k+1 (B). In the updating process the two sites are labelled 
1, 2 and the operators arc rcnumbercd so that all sub-sequences contain operators 
(;), (;),(;),(;), (i), (l), t = 1,2, with the operators 6) acting between sites 1, 2 
and the operators (:I acting on site i. The moves considered are then of the type 
($(;) U (:)e). The positions of the operators in the original sequence are stored, 
so that the full sequcnce can be rccombincd after performing a number of moves in 
each sub-sequence. Figure 1 shows an example of an index sequence and the way it 
is split into sub-scqucnccs. Now consider the actual updating of a sub-sequence. Let 

I l l 0 0  I @  @ 
1 0 1 1 0  CIa l o r  

6 
7 
6 
9 

10 
11 
12 
13 
14 
15 
16 

Flgurr L Fxxample of a slale and an indor sequence for a 4-sile syslem (lefl). ’lb the 
right are ilic W O  renumbered sub-sequences oblained by splilling the sequence according 
10 (A) in (iii), along willi lhe mrrcspanding two-sile stales. a and b refer 10 an operator 
(Zj and p in llw sub-sequences is lite pasition oi the operator in ihe iuii sequence. 
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I denote the length of the sub-sequence. One of the operators ( ; ) p ,  a = 1,2,4,  is 
chosen at random, where p now is a position in the sub-sequence, p E 11, . . . , 1 ) .  If 
a = 4 let a' = 1,2 with equal probabilitics. If a = 1 or a = 2 let a' = 4. Since 
there are two ways of choosing a' if U = 4, compared to only one otherwise, the 
change is cancelled with probability 0.5 in the latter case. The a priori probabilities of 
attempting moves are then equal in both directions at this point. Define t such that 
t = a' if a = 4 and t = a otherwise. Consider a change (;JP(;Jp, + (;)Fr2)F,. 
This change will result in a forbidden operation if the sub-sequence contains an 
operator ( i ) , ,  or ( i )p , ,  with p < p" < p' (the position variables p are periodic with 
period 1 ) .  We therefore search the sub-sequence in the forward direction, starting 
from the chosen p + 1. The numbers N,, N,, of operators (;) and f,') encountered 
are stored, along with the positions pi of the operators (4). The search is terminated 
when an operator (;) o r  (i) is encountered. A position pj,  i = l,, . . , N , ,  is then 
chosen at random and a change ( ; ) p ( ; ) p ,  4 r2')p($)p, is attempted. As the weights 
for the new and the old conligurations are the same if the new configuration is an 
allowed one, only an acceptance probability need be constructed in order to make 
the number of moves attempted equal in both dircctions. With the above procedure 
of choosing the operators to be exchanged, we can use 

I ^ \  ,^\ , ^ # \  , ^# \  

"I '[ (i) ('4) - (:) (:)I = N, + N,, 
(4.13) 

If the change is accepted the states l c ~ ( k ; ) ) ~ ~  = l ~ ~ , , ~ ( k ) , ~ 2 , ~ ( ~ ) ) ~ l ~ l , ~ ( k ) , ~ 2 , ~ ( k ) ) ,  
k = p !  . . . !pi - l2 arc checkcd for forbidden doubly occupied sites, and the move 
rejected if such states are found. 'Ib allow for a speedy check, all the states 
1c~( i ) )~ , , i  = 0,. . . , 1  - 1, arc stored, and updated in the case where a move is 
accepted. 

(iv) Moves changing the winding number: thinking of the operators (i) and (:) 
as creating links bctwecn the sites b and b+ 1, changing the winding number by one 
corresponds to adding or rcmoving a ring of N links. This can be achieved as follows. 
A set'of N / Z  operators R ,  = {J i , )F, , - ( i2)pz , . .  . , (,,' ) }, t = 1,2, is replaced 

by a set R, = { ( I )  , ( c ' 2 ) p 2 , .  . . , (c * ) },with the bs and the cs constituting the 

set {l, . . . , N } .  First choosing t = 1 , 2  at random, the set R, is formed by searching 
the sequence for operators ( i ) ,  starting from a randomly chosen position. If some 
(i) is encountered marc than once bcforc a set of N / 2  distinct operators have been 
found, the move is canccllcd. Othenvisc the set R, is replaced by R, and the state 
la) is propagated by the new sequencc to check for forbidden operations. If the new 
sequence is allowed, the move is always accepted. Since the possibility of a non-zero 
winding number is a result of the boundary conditions chosen these kinds of moves 
are needed only for small systcms, unless one wants to calculate a quantity which is 
a function of the winding number. 

(v) State changes: for a given index sequence all allowed states la) result in 
configurations of equal weights. Thus state changes made with equal probabilities in 
both directions should always be accepted if they do not cause forbidden operations. 
This can be rapidly chccked for when the index sequence is split into sub-sequences. 
Note that the state 1 0 )  can change also as a result of the moves (iii) above. 

P N / I  

C l  P I  P N / I  

A complete updating cycle (an MC step) consists of the following ~~ steps. 
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A sequence of L length-changing moves (i) are made. 
AI1 positions in the scquence are updated in moves of type (ii). 
The sequence is split into sub-sequences according to (A) in (iii) and a number 

of the moves described in (iii) are made in each sub-sequence. The number of 
moves attempted is chosen proportional to the number of 1- 2- and hoperators in 
the sub-sequence and so that the total number of moves attempted in each MC Step 
is constant. The total number of moves attempted is chosen such that on average 
approximately 3C-50% of the involved operators are exchanged in one MC step. 

A number, of the order of N ,  of state changes are performed. 
The full sequence is recombined and split again according to (B) in (iii). Moves 

A number, of the ordcr of N ,  of sfate changes are performed. 
The full sequence is recombined. 
A number of winding number moves are attempted if the system is small. 
The time needed for an MC step scales linearly with the size of the system 8 the 

number of winding number moves attempted is taken to be independent of the system 
sue. In practice the acceptance ratio for these moves approaches zero rapidly when 
the system size increases, and there is no point in considering them at all for large 
systems. AE the average length of the scquence is determined by (3.8). the simulation 
time Scales roughly linearly with the inverse temperature. The memory requirements 
are very small, since the full intermediate states l a ( p ) ) ,  p # 0, need not be stored. 

are attempted as above. 

4 ,  I ,  

-. ._ -. . . - --I- - 
I ,  I - -.I .-.. i-- 

. . - -. -. . . ~. .- 
I ,  
I ,  

I ,  
I ,  

I ,  I ,  

----- 
- - - -. . - - I ,  --c.-. 

I ,  
I ,  

I ,  

I ,  

Flgure Z Gmphical represenlalion of local loop moves needed in the mse of a Iwo- 
dimensional q u a r e  lattice. 7 h c  links rcpresenl operaton (L), t = 1,2. 

lb generalize the scheme describcd here for higher-dimensional systems, addi- 
tional moves involving local loops of I- and 2-operators must be included (see figure 2 
for an example). Moves changing the winding number in higher dimensions can be 
made along the lines of (iv) above, but with the sequence split into a number of 
sub-sequences containing only the operators necessary to determine whether a move 
results in forbidden opcrations. For boson systems on bipartite lattices and non- 
frustrated spin systems the weight W ( a ,  s,) can generally be made positivedefinite 
in any number of dimensions. For fermion systcms in higher dimensions this is not 
possible; an index scqiicncc corresponding to an operator product which permutes an 
odd number of particlcs results in a negative phase. The nature of the sign problem 
is similar in the world-line method, where it also always appears for fermions in more 
than one dimension [ I l l .  In contrast, in the determinant method it can be avoided 
in some important cascs, e.g. the half-lilled Hubbard model 1121. In cases where it 
cannot be eliminated, thc sign problem in the determinant method is typically much 
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less severe than in methods relying on a direct representation of the fermion degrees 
of freedom [14,16]. Due to the sign problem the simulation scheme presented here 
is likely to be useful for fcrmions in one dimension only. 

5. Results 

In this section results of test runs on the I D  Hubbard model are presented. Com- 
parisons with exact results are made for small systems. In order to investigate the 
potential of the simulation scheme, 32-site systems at various band-fillings were stud- 
ied at a fairly low temperature. Results for structure factors and static susceptibilities 
are presented. 

Defining 

where p is the particle dcnsity, the spin- and charge-density structure factors are 

and the static susceptibilities are 

0 

The simulation runs are divided into a number of bins (c 10). (5.2) and (5.3) are 
measured in position space using formulae of the type (3.4) and (3.16) and the Fourier 
transforms arc calculatcd for each bin. The final averages and errors are calculated 
using the binned data. In sums of the type (3.4) only partial sums with the summation 
variable p = 0,4N,&V, ,  . . are used, in order not to spend time measuring almost 
identical states. The time required (or the mcasurements then scales as NZ. 

In tables 1 and 2 some simulation rcsults for a 4-site ring at half-filling and an 
&site ring at quarter-lilling arc compared with data obtained by exact diagonalization 
of the Hamiltonian. In both cases U = 4. The simulations consisted of 2 x lo6 
and lo6 MC steps for N = 4 and 8 respectively. Measurements were made evely 
fifth MC step. The results agree within statistical errors. The potential energy Can 
be calculated in [WO ways; using (3.7) or the number of doubly occupied sites. This 
provides for a good check on the simulations, as does calculating the expectation 
value of the operators I l4 , ; ,  which should be equal to one. 
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Tobk 1. Monte Carlo and Wac1 mulls for the energy and density of doubly arupied site1 
and the spin- and cliargc-density structure facton and susceptibilities at the wavenumber 
9 = r. l l ic  system is a 4-silr ring at  half-filling and invem temperature p = 8. 

Opemior MC Exact 

-E 0.6794(6) 0.68013 
d 0.1194(1) 0.11936 . "nl,*\ &(*) ,.O,>(', 1.83395 
x s ( n )  2.94(2) 191680 
SD (r) O.MOS(3) 0.44040 
XD(=) 0.1671(4) 0.16756 

Toblc 2. Monte Carlo and =act results far the soin-densitv Sfmcture factor as a function 
of lhc wavcnumber. The syslem is a quaner-filled 8-site ring at invene temperature 
p = 8. 

9 MC Exact' 

r / 4  0.308(2) 0.30803 
n/2  0.693(2) 0.69344 
3r /4  0.5708(4) 0.57132 
it u . m i y s ,  0,55254 n1r41,,.. 

We now discuss simulations carried out on 32-site rings at the inverse temperature 
p = 8 and band fillings i, $ and $ ( p  = i, :, 1). The simulations consisted of 
1-1.5 x lo6 MC steps with measurements made every fifth MC step. No winding 
number moves were made. The acceptance rates for the moves (i) and (ii) above 
are around 30%. For the moves of type (iii) the acceptance rate is of the order 
of 5-lo%, depending of the band filling. Very few state changes are accepted at 
this low temperature. The simulations were carried out on a VAX Mxx)-510 and on 
an IBM Powerstation 530. Thc CPU time needed for 1000 MC steps, including the 
measurements, was approximately 1 minute on both machines. 

As numerical studics of this system have been carried out before [17,18], here 
we only briefly comment on the results. For a non-interacting system xs(2P,) and 

..: '.. . .,: -. 
- 1  :. .: U 
m 2 1 ... .. 
v 

q 

Figure 3. Spin-density slructure faclors for p = f (open squares), p = full squares), 
and p = I (Irianplcs). llic inset shows the mniplete p = I data. The lines connecting 
the p i n t s  nrc only intended to guide the eye. 

! (  
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xD(2PF) diverge logarithmically as T - 0. P, is the Fermi momentum of the system. 
In the limit of U -+ 00 the so divergence is shifted to q = 4PF and xs(2P,) diverges 
like l/T1/* away from half-filling 119,201. At half-filling the model for U -+ 00 is 
equivalent to the Heisenberg model with S ( T )  - 1/T and a logarithmically divergent 
& ( A ) .  The interesting question is the 21;. and 4P, responses and structure factors 
for intermediate values of U [17]. All results presented here are for U = 4. Figures 3 
and 4 show the spin structure and static susceptibility. There are clear 2PF peaks 
in the susceptibility at all fillings. The chargedensity structure factors (figure 5 )  do 
not have much structure. They are slowly increasing functions of q. An interesting 
feature is the structure factor up to wave vector % ~ / 2 ,  which is almost identical 
for p = $ and $, but considerably lower for p = 1. The chargedensity susceptibility 
(figure 6) shows clear peaks at 2P, and 4PF for p = $. The peak at 4P, is known 
to vanish as the tempcrature is further lowered. [17] For p = there is a clear peak 
at 4P, and signs of a wcaker peak at 2P,. The p = 1 response is a slowly increasing 
function of q. 

4 

3 

1 

n " 
0 1 2 3 

Figure 4 Spin-dunsily suxcptibililies for p = f (open squares), p = 3 (full squares), 
and p = I (lrianglus). lhe inset shows the complete p = 1 dala. 

0.5 

0.4 

- 0.3  

0.2 

U 
v) 

0.1 

0 
0 1 2 3 

9 

Figure 5. 
squarer), and p = 1 (trianglcs). Stalislical errors are smaller than the symbols. 

Clmrgu-density structure hclon for p = f (open squares), p = a (full 

'Ib illustrate the Tact that only a limited range of powers of the Hamiltonian 
mntributes significantly to the partition function, a histogram of the distribution of 
lengths of the index sequcnce in the simulation with p = 1 is displayed in figure 7. 
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0.3 

0.1 

0 
0 1 2 3 

9 

Figure 6. Charge-dcnsily susccplibililics for p = 
and p = 1 (triangles). ,Slalislicnl errors are smaller lhan the symbols 

(open squares), p = a (full squares). 

- C 0.01 i\.] 
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0.005 au 0 1300 1400 1500 
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Figure 7. Dislribution of Ule lenglhf o l  the index sequences for p = 1 

In conclusion, a generalization of Handscomb's quantum Monte Carlo scheme has 
been applied to the one-dimensional Hubbard model. Simulations of 32-site systems 
at a fairly low temperature have been carried out. The accuracy of the results 
achieved, using modest computer resources, indicate that simulations of large systems 
using this method are fcusible. The  schcme is easily generalized for application to 
other fermion models in one dimension as well as to spin systems and boson systems 
on bipartite lattices. 
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